A Satellite-Based Sunshine Duration Climate Data Record for Europe and Africa
نویسندگان
چکیده
Besides 2 m temperature and precipitation, sunshine duration is one of the most important and commonly used parameter in climatology, with measured time series of partly more than 100 years in length. EUMETSAT’s Satellite Application Facility on Climate Monitoring (CM SAF) presents a climate data record for daily and monthly sunshine duration (SDU) for Europe and Africa. Basis for the advanced retrieval is a highly resolved satellite product of the direct solar radiation from measurements by Meteosat satellites 2 to 10. The data record covers the time period 1983 to 2015 with a spatial resolution of 0.05◦ × 0.05◦. The comparison against ground-based data shows high agreement but also some regional differences. Sunshine duration is overestimated by the satellite-based data in many regions, compared to surface data. In West and Central Africa, low clouds seem to be the reason for a stronger overestimation of sunshine duration in this region (up to 20% for monthly sums). For most stations, the overestimation is low, with a bias below 7.5 h for monthly sums and below 0.4 h for daily sums. A high correlation of 0.91 for daily SDU and 0.96 for monthly SDU also proved the high agreement with station data. As SDU is based on a stable and homogeneous climate data record of more than 30 years length, it is highly suitable for climate applications, such as trend estimates.
منابع مشابه
Satellite-Based Sunshine Duration for Europe
In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG) SEVIRI (Spinning Enhanced Visible and Infrared Imager). ...
متن کاملA Method to Estimate Sunshine Duration Using Cloud Classification Data from a Geostationary Meteorological Satellite (FY-2D) over the Heihe River Basin
Sunshine duration is an important variable that is widely used in atmospheric energy balance studies, analysis of the thermal loadings on buildings, climate research, and the evaluation of agricultural resources. In most cases, it is calculated using an interpolation method based on regional-scale meteorological data from field stations. Accurate values in the field are difficult to obtain with...
متن کاملHomogeneity Analysis of the CM SAF Surface Solar Irradiance Dataset Derived from Geostationary Satellite Observations
A satellite-based climate record of monthly mean surface solar irradiance (SIS) is investigated with regard to possible inhomogeneities in time. The data record is provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Application Facility on Climate Monitoring (CM SAF) for the period of 1983 to 2005, covering a disk area between ±70◦ in lat...
متن کاملSunshine Duration Variability in Haihe River Basin, China, during 1966–2015
Sunshine can have a profound impact on the systematic change in climate elements, such as temperature and wind speed, and in turn affects many aspects of the human society. In recent years, there has been a substantial interest in the variation of sunshine duration due to the dramatic global climate change. Hence, there is a need to better understand the variation of sunshine duration in order ...
متن کاملAn Improved Approach for Estimating Daily Net Radiation over the Heihe River Basin
Net radiation plays an essential role in determining the thermal conditions of the Earth's surface and is an important parameter for the study of land-surface processes and global climate change. In this paper, an improved satellite-based approach to estimate the daily net radiation is presented, in which sunshine duration were derived from the geostationary meteorological satellite (FY-2D) clo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017